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Introduction

Using a single scalar metric to evaluate action
detectors does not allow us to see the big picture

* What are the strengths and weaknesses of
detectors? How can they be improved?

* What makes an action hard to detect?
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Contribution: a new methodology to diagnose
action detectors on ActivityNet and THUMOS14

Recommendations

1. Next generation action detectors should focus
on fixing localization errors.

2. The uncertainty of temporal boundaries is not
impeding the development of better algorithms.

3. We need algorithms that can better handle
temporal context around action instances.
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Impact of False Positive Errors
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Error Breakdown (%)

Localization errors are
a big hurdle
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Can you match the FP profiles

with Average-mAP, values?
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False Negative Errors and Sensitivity Analysis

a) Baking b) Rock

Let’s play some games

1. What action could happen next?
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c) Bungee

cookies climbing jumping

2. When does “Long Jump "end?

C
Check our demo!

By characterizing the dataset, our analyses show:

1.

Instances with large context are hard to detect (high context size)

2. Algorithms are very sensitive to coverage and context size
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